skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fallas_Padilla, Diego"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The interplay between coherence and system-environment interactions is at the basis of a wide range of phenomena, from quantum information processing to charge and energy transfer in molecular systems, biomolecules, and photochemical materials. In this work, we use a Frenkel exciton model with long-range interacting qubits coupled to a damped collective bosonic mode to investigate vibrationally assisted transfer processes in donor-acceptor systems featuring internal substructures analogous to light-harvesting complexes. We find that certain delocalized excitonic states maximize the transfer rate and that the entanglement is preserved during the dissipative transfer over a wide range of parameters. We investigate the reduction in transfer caused by static disorder, white noise, and finite temperature and study how transfer efficiency scales as a function of the number of dimerized monomers and the component number of each monomer, finding which excitonic states lead to optimal transfer. Finally, we provide a realistic experimental setting to realize this model in analog trapped-ion quantum simulators. Analog quantum simulation of systems comprising many and increasingly complex monomers could offer valuable insights into the design of light-harvesting materials, particularly in the nonperturbative intermediate parameter regime examined in this study, where classical simulation methods are resource intensive. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026